Piscidin P1 uses soft spots in membranes as sites of action

Laura Lucas¹, Myriam Cotten² and Ella Mihailescu³

¹Catholic University, Washington DC ²College of William and Mary, Williamsburg, VA ³Institute for Bioscience and Biotechnology Research, Rockville MD

Biophysical Society Meeting, Feb-2018

Piscidins

P1 FFHHIFRGIVHVGKTIHRLVTG

- Hybrid striped bass (*Morone chrysops x Morone saxatilis*)
- · First isolated from mast cells
- Broad spectrum activity against Gram-positive and –negative bacteria
- Highly conserved N-term sequence, but varied C-terminus
- Rich in HIS residues
- N-terminal metal binding (Cu²⁺, Ni²⁺) motif (ATCUN)
- P1 minimum inhibitory concentrations (MIC) against:
 MRSA

< 2 µM

- E.Coli :

2-10 µM

- Bacillus Cereus:

< 2 µM

- hemolytic activity (red blood cells):

~50 µg/mL

• P1 active against HIV-1, funguses and human carcinoma

Piscidin P1 induces apoptosis and necrosis of tumor cells

HT1080 cells (human fibrosarcoma) treated with 10µM P1 Lin H –J. et al , Zool. Sci 29 (2012)

• How does P1 breach the lipid membrane barrier?

• Does the peptide show binding preference for specific lipid compartments in membranes?

Structures of Piscidins in bilayers

Fourier analysis

Structures of Piscidins in bilayers

Determining peptide conformation with specific deuteration

dP1 FFHHIFRGIVHVGKTIHRLVTG (d18)

ddP1 FFHHIFRGIVHVGKTIHRLVTG (d33)

C-term + N-term deuteration

Neutron diffraction: P1 in POPC/POPG 3/1, RH=93%, T=23°C

• How does P1 breach the lipid membrane barrier?

 Does the peptide show binding preference for specific lipid compartments in membranes?

P1 causes segregation of cholesterol in membranes

P1 is not inhibited by cholesterol in membranes

98% RH, 25°C

P1 inhibits the gel state of POPE at low temperatures

- Neutron diffraction with specific D-labeling is used to asses the structural interactions of membrane-active peptides with bilayers on a molecular level
- Piscidin P1 inserts the C-terminus and breach the hydrophobic barrier by recruiting lipid headgoups and water into the membrane interior
- No indication that stable pores are forming (defects are predominant)
- P1 exploits soft spots in the membrane for entry (regions with high curvature strain and higher fluidity)

Myriam Cotten (William & Mary) Alfredo Angeles-Boza (U Connecticut) Scott Perrin & Rich Pastor (NIH) Vitalii Silin (IBBR) David Worcester (NIST/NCNR) Roderico Acevedo (IBBR) Laura Lucas (Catholic University) – SURF program 2017 Jorge Hernandez (Clemson University) – SURF program 2015

Biomolecular Measurement Division

UNIVERSITY OF MARYLAND | NIST INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

NIST Center for Neutron Research