Genetic Basis of Common Human Disease: Insight into the Role of Missense SNPs from Genome-Wide Association Studies.

Printer-friendly versionPrinter-friendly versionPDF versionPDF version
TitleGenetic Basis of Common Human Disease: Insight into the Role of Missense SNPs from Genome-Wide Association Studies.
Publication TypeJournal Article
Year of Publication2015
AuthorsPal, LR, Moult, J
JournalJ Mol Biol
Volume427
Issue13
Pagination2271-89
Date Published2015 Jul 3
ISSN1089-8638
Abstract<p>Recent genome-wide association studies (GWAS) have led to the reliable identification of single nucleotide polymorphisms (SNPs) at a number of loci associated with increased risk of specific common human diseases. Each such locus implicates multiple possible candidate SNPs for involvement in disease mechanism. A variety of mechanisms may link the presence of an SNP to altered in vivo gene product function and hence contribute to disease risk. Here, we report an analysis of the role of one of these mechanisms, missense SNPs (msSNPs) in proteins in seven complex trait diseases. Linkage disequilibrium information was used to identify possible candidate msSNPs associated with increased disease risk at each of 356 loci for the seven diseases. Two computational methods were used to estimate which of these SNPs has a significant impact on in vivo protein function. 69% of the loci have at least one candidate msSNP and 33% have at least one predicted high-impact msSNP. In some cases, these SNPs are in well-established disease-related proteins, such as MST1 (macrophage stimulating 1) for Crohn's disease. In others, they are in proteins identified by GWAS as likely candidates for disease relevance, but previously without known mechanism, such as ADAMTS13 (ADAM metallopeptidase with thrombospondin type 1 motif, 13) for coronary artery disease. In still other cases, the missense SNPs are in proteins not previously suggested as disease candidates, such as TUBB1 (tubulin, beta 1, class VI) for hypertension. Together, these data support a substantial role for this class of SNPs in susceptibility to common human disease.</p>
DOI10.1016/j.jmb.2015.04.014
Alternate JournalJ. Mol. Biol.
PubMed ID25937569