Crystal structure of the YchF protein reveals binding sites for GTP and nucleic acid.

Printer-friendly versionPrinter-friendly versionPDF versionPDF version
TitleCrystal structure of the YchF protein reveals binding sites for GTP and nucleic acid.
Publication TypeJournal Article
Year of Publication2003
AuthorsTeplyakov, A, Obmolova, G, Chu, SY, Toedt, J, Eisenstein, E, Howard, AJ, Gilliland, GL
JournalJ Bacteriol
Volume185
Issue14
Pagination4031-7
Date Published2003 Jul
ISSN0021-9193
KeywordsAmino Acid Sequence, Bacterial Proteins, Binding Sites, Cloning, Molecular, Crystallization, Crystallography, X-Ray, DNA, GTP Phosphohydrolases, Guanosine Triphosphate, Haemophilus influenzae, Models, Molecular, Molecular Sequence Data, Protein Conformation, Protein Folding
Abstract

The bacterial protein encoded by the gene ychF is 1 of 11 universally conserved GTPases and the only one whose function is unknown. The crystal structure determination of YchF was sought to help with the functional assignment of the protein. The YchF protein from Haemophilus influenzae was cloned and expressed, and the crystal structure was determined at 2.4 A resolution. The polypeptide chain is folded into three domains. The N-terminal domain has a mononucleotide binding fold typical for the P-loop NTPases. An 80-residue domain next to it has a pronounced alpha-helical coiled coil. The C-terminal domain features a six-stranded half-barrel that curves around an alpha-helix. The crablike three-domain structure of YchF suggests the binding site for a double-stranded nucleic acid in the cleft between the domains. The structure of the putative GTP-binding site is consistent with the postulated guanine specificity of the protein. Fluorescence measurements have demonstrated the ability of YchF to bind a double-stranded nucleic acid and GTP. Taken together with other experimental data and genomic analysis, these results suggest that YchF may be part of a nucleoprotein complex and may function as a GTP-dependent translation factor.

Alternate JournalJ. Bacteriol.
PubMed ID12837776
PubMed Central IDPMC164861
Grant ListP01-GM57890 / GM / NIGMS NIH HHS / United States