Filters
Results: 86
Charge variant analysis of monoclonal antibodies by CZE-MS using a successive multiple ionic-polymer layer coating based on diethylaminoethyl-dextran
Tuesday, September 17 2024
The characterization of the impurities of pharmaceutical monoclonal antibodies (mAbs) is crucial for their function and safety. Capillary zone electrophoresis (CZE) is one of the most efficient tools to separate charge variants of mAbs; however, peak characterization remains difficult, since the hereby used background electrolytes (BGEs) are not compatible with electrospray ionization-mass spectrometry (ESI-MS). Here, a method that allows the separation of intact mAb charge variants is presented...
Differential glycosylation does not modulate the conformational heterogeneity of a humanised IgGk NIST monoclonal antibody
Monday, September 9 2024
Investigating the structural heterogeneity of monoclonal antibodies is crucial to achieving optimal therapeutic outcomes. We show that tandem-trapped ion mobility spectrometry enables collision-induced unfolding measurements of subpopulations of a humanised IgGk NIST monoclonal antibody (NISTmAb). Our results indicate that differential glycosylation of NISTmAb does not modulate its conformational heterogeneity.
Anisotropic coarse-grain Monte Carlo simulations of lysozyme, lactoferrin, and NISTmAb by precomputing atomistic models
Thursday, September 5 2024
We develop a multiscale coarse-grain model of the NIST Monoclonal Antibody Reference Material 8671 (NISTmAb) to enable systematic computational investigations of high-concentration physical instabilities such as phase separation, clustering, and aggregation. Our multiscale coarse-graining strategy captures atomic-resolution interactions with a computational approach that is orders of magnitude more efficient than atomistic models, assuming the biomolecule can be decomposed into one or more rigid...
Near UV and Visible Light-Induced Degradation of Bovine Serum Albumin and a Monoclonal Antibody Mediated by Citrate Buffer and Fe(III): Reduction vs Oxidation Pathways
Tuesday, July 16 2024
Light exposure during manufacturing, storage, and administration can lead to the photodegradation of therapeutic proteins. This photodegradation can be promoted by pharmaceutical buffers or impurities. Our laboratory has previously demonstrated that citrate-Fe(III) complexes generate the ^(•)CO(2)^(-) radical anion when photoirradiated under near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) [Subelzu, N.; Schöneich, C. Mol. Pharmaceutics 2020, 17 (11), 4163-4179; Zhang, Y. Mol....
Comparison of N-Glycopeptide to Released N-Glycan Abundances and the Influence of Glycopeptide Mass and Charge States on N-Linked Glycosylation of IgG Antibodies
Thursday, March 7 2024
We report the comparison of mass-spectral-based abundances of tryptic glycopeptides to fluorescence abundances of released labeled glycans and the effects of mass and charge state and in-source fragmentation on glycopeptide abundances. The primary glycoforms derived from Rituximab, NISTmAb, Evolocumab, and Infliximab were high-mannose and biantennary complex galactosylated and fucosylated N-glycans. Except for Evolocumab, in-source ions derived from the loss of HexNAc or HexNAc-Hex sugars are...